## Exhibit I

# Mars Landing Radar Antenna Array Functional Requirements Document

July 17, 2003

Contract No. TBD, Exhibit I

Date: July 17,2003

## **Technical Specifications**

## 1. Functional Requirements for the Array Elements

The final antenna array shall consist of some 128 individual passive elements which will be driven through the array backside via stripline or microstrip feed by a set of 16 eight-element T/R modules. While the goal for this Contract is for an array of elements, the array performance will be strongly influenced by individual element characteristics. The electrical and physical characteristics of the array elements are described in Table 1.

**Table 1**. Technical specifications for a single element design of antennas making up the Phased Array Terrain Radar (PATR) array. Requirement and goal specifications apply to both prototype and flight-qualified components.

| Parameter            | Specification               | Comments                   |
|----------------------|-----------------------------|----------------------------|
| Beamwidth            | 30 degrees HPBW             | symmetric in azimuth and   |
|                      | required                    | elevation                  |
| Vertical Dimension   | < 7 cm required,            |                            |
|                      | < 4 cm goal                 |                            |
| Radiation Efficiency | > 30 % required             |                            |
|                      | > 60 % goal                 |                            |
| Sidelobe performance | PSLR < -20 dB, ISLR < -     |                            |
|                      | 20dB required               |                            |
| Feed                 | Microstrip or stripline (50 |                            |
|                      | ohm nominal)                |                            |
| Polarization         | circular or linear          | polarization may be chosen |
|                      |                             | to minimize depth of       |
|                      |                             | antenna element            |
| Bandwidth            | 30 – 36 GHz required        |                            |
| Peak power handling  | 50 mW required              |                            |
| Weight               | < 23 grams required         |                            |
|                      | < 8 grams goal              |                            |
| Return Loss          | > 20 dB required            |                            |

#### 1.1 Electrical Interfaces

Individual elements of the array shall be fed through the backplane of the array, either through stripline or microstrip. The exact choice of feed is left up to the Contractor so as to increase flexibility in the design. In general, the feed should be chosen to minimize the array depth and overall weight without violating the efficiency requirements for the element interface.

Contract No. TBD, Exhibit I Date: July 17,2003

2. Functional Requirements for the Antenna Array

The overall 128 element array shall be contained within a 0.5 m (nominal; see table for details) diameter fixture. The array itself shall be the principal mechanical structure for the space that it occupies. Hence, in addition to the weight and electrical characteristics, the array must be shown to be mechanically rigid while occupying a minimum of vertical space. As discussed in the statement of work the array development shall take place in three stages. The first stage consisting of a 16 element subset of the larger 128 element array.

## 2.1 Mechanical Envelope

Dimensions of the 16 element subarray shall be 15 cm in diameter and less than 7 cm in depth. Dimension of the 128 element full array, as mentioned above, shall be 0.5 to 0.65 m in diameter and less than 7 cm in depth.

#### 2.2 Element Positions

Position of elements within the array will be selected by JPL, with a positional accuracy requirement approximately one order of magnitude better than the 8.6 mm wavelength. In general, element placement will be random, decreasing in radial density as a function of the radial distance from the array center (in order to reduce grating lobes and sidelobes).

A summary of the electrical and physical characteristics of the full array is described in Table 2.

**Table 2**. Technical specifications for the antenna array design (applies to both flight-qualified and prototype arrays).

| Parameter                 | Specification       | Comments                        |  |
|---------------------------|---------------------|---------------------------------|--|
| Number of Elements        | 128 required        | 16 elements for the first phase |  |
|                           |                     | of array development            |  |
| Positional Accuracy       | < 0.25 mm in all    |                                 |  |
|                           | dimensions required |                                 |  |
| Net weight (including     | < 3 kg required,    |                                 |  |
| elements)                 | < 1 kg goal         |                                 |  |
| Diameter                  | 0.5 m nominal       | diameter may increase to 0.65   |  |
|                           |                     | meters; the number of elements  |  |
|                           |                     | will stay the same however      |  |
| Minimum isolation between | < -20 dB required   |                                 |  |
| any two elements          | < -30 dB goal       |                                 |  |

Contract No. TBD, Exhibit I

Date: July 17,2003

In addition to the above requirements and goals, some interaction with the JPL RF team will be required to mechanically and electrically interface the array to the remainder of the PATR subsystems.

#### 3. Mechanical Characteristics

The combination of the antenna elements and antenna array (with fixture) shall be of solid construction and withstand vibrational and temperature stresses commensurate to those encountered with during launch, transit and entry into the Martian atmosphere. The following details a list of mechanical and thermal constraints which have been tailored for the PATR system from a "baseplate" typically used for providing a first estimate for these requirements. Gross differences between what is possible and what is required should be referred back to the JPL Contract Technical Manager and Contract Negotiator.

## 3.1 Flight-Qualified Versus Prototype Array Requirements.

While the following technical specifications relating to the mechanical characteristics are for the flight-qualified units, it is expected that the prototype array shall achieve similar mechanical performance in anticipation of the construction of the flight-qualified units.

#### 3.2 Load Limits

The PATR structures and their mounting interfaces shall be designed to the limit loads defined in Figure 1, Mass Acceleration Curve (MAC).

The MAC limit load factors which are based on the total mass of each subsystem, shall be applied at the center of gravity of each subsystem in their launch configuration, and in the direction yielding the most critical loads. The direction of the most critical load being in the vertical direction (10 cm overall thickness) of the array and RF components. In the instance of the array design only (i.e. requirements set by this RFP), critical loading shall be determined over the vertical extent of the submitted design.

## 3.3 Strength

Materials: The PATR shall use property data, for all allowable materials, obtained from the most recent revision of MIL-HDBK-5F, "Metallic Materials and Elements for Aerospace Vehicle Structures," or from other sources approved by the JPL Contract Technical Manager. Type "A" basis material properties (99% probability and 95% confidence) or equivalent shall be used for all primary support structures.

Factor of Safety: The passive array supplied to the terrain radar shall be designed with a yield factor of safety (FS) of 1.25 and an ultimate FS of 1.5 for primary and secondary structures which shall be qualified by static (or equivalent) testing, or with a yield FS of 2.0 and an ultimate of 2.6 for primary and secondary structures which shall not be qualified by static (or equivalent) testing.

Contract No. TBD, Exhibit I

Date: July 17,2003

Margins of Safety: The margins of safety of all structural elements shall be positive (greater than or equal to zero) and shall be calculated as:

Margin of Safety = 
$$\frac{\text{Allowable Load/Stress (yield or ultimate)}}{\text{Applied Load/Stress X FS (yield or ultimate)}} -1 \ge 0$$

## 3.4 Stiffness

The PATR shall have sufficient rigidity to withstand its design loads without excessive deformation and/or deflections. Special considerations for rigidity shall be given to areas such as surfaces used as references for instrument pointing. Deformation and/or deflections shall be considered excessive if they are greater than the requirements placed on the structure or can cause unintentional deleterious contact between adjacent assemblies within the array, physical separation of any preloaded joint at limit load times the appropriate yield factor of safety, or violation of the launch vehicle dynamic envelope. The PATR and other electronics boxes, when rigidly mounted at their mounting interface, shall have a minimum resonant frequency greater than 20 Hz in any direction.

### 3.5 Fatigue

Fatigue shall be considered in the design of the array structural elements Material selection shall consider fatigue characteristics in relation to the design requirements of the structural elements. A safety factor of 4.0 in life is required.

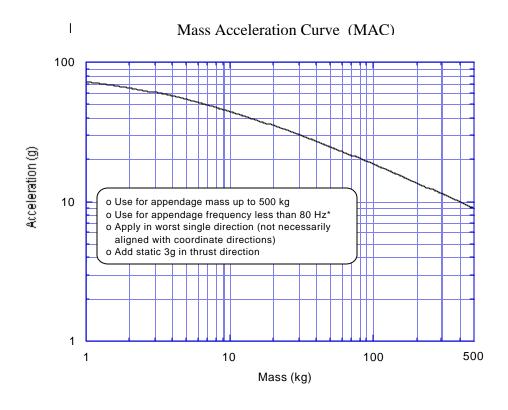
#### 3.6 Thermal Effects

Thermal stresses and thermal distortions shall be considered in the analysis of structures supporting the array. Thermal conditions, such as temperature and thermal gradient extremes, which could affect latch loads and/or structural alignments shall be analyzed or tested. Consideration shall also be given to deterioration of material properties caused by temperature changes encountered in the launch, transit and landing of the terrain radar (±40 deg. C). Previously stated yield and ultimate margins of safety shall be positive with thermal effects included.

The array shall be able to maintain its structural integrity throughout the life of the instrument. As such, materials used should be able to withstand temperatures between – 65 and 75 degrees C for the six month transit time period between Earth and Mars. Additionally, the operating range of the instrument is currently stated to be between –40 and 50 degrees C. Use materials that will have a low thermal inertia (to avoid uneven thermal gradients) while maintaining overall physical shape.

Contract No. TBD, Exhibit I Date: July 17,2003

The PATR shall be capable of meeting the thermal requirements specified in Table 3.


**Table 3.** Thermal exposure of the PATR during launch, transit and reentry to the Martian atmosphere. (applies to flight-qualified units only)

| Req#  | Category                                                 | Temperature Range or Rate                   |      |
|-------|----------------------------------------------------------|---------------------------------------------|------|
|       |                                                          | Cold                                        | Hot  |
| 7.2.1 | Flight Acceptance Range (functional & performance range) | -40°C                                       | 50°C |
| 7.2.2 | Qualification Range                                      | -55°C                                       | 75°C |
| 7.2.3 | Non-operating Range (survival range)                     | -65°C                                       | 75°C |
| 7.2.4 | Performance Rate                                         | 1°C / minute over the FA range              |      |
| 7.2.5 | Qualification Rate                                       | 5°C per minute over the qualification range |      |

## 3.7 Structural Nonlinearity

Any significant structural/mechanical nonlinear characteristics shall be thoroughly investigated by analysis and/or test.

Figure 1. Mass Acceleration Curve

